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Properties of the Lorentz model stability boundaries are investigated by
methods of the qualitative theory of differential equations developed by
Bautin [1], It is shown that for positive physical parametess the boundary of
the stability region is unsafe,

The Lorentz model [2] is defined by the system of equations
T =0 —y)y =—ax24+rr—y, 2 =2y — bz &)

where 3, 0,and r are positive physical parameters, to which attention was drawn
in connection with the problem of existence of stable limit sets of complex nature,
viz, the so-called "strange attractors” [3,4], and the ensuing new interpretation of
turbulence. System (1) can have three stability states

Olr=y=1=0), Oz=y=+[B@r—N" z2=r—1
Os(z=y=—[b(r =", z2=r—1)

The equilibrium state 0. exists for any values of parameters and is a stable
node when <1 ora saddle when r>1. When r>>1 the bifuraction of the
equilibrium state O, (r = 1)resulfs in the appearance of stable equilibrium state 0,
and Oy, Properties of the boundaries of equilibrium stabflity region of states 0,
and O, are fnvestigated below in the critical case of two pure imaginary roots of
the characteristic equation, Interest {n this problem was stimulated by new results
[4] which indicate the existence of a strict mode of the onset of stochastic propert-
ies and hysteresis for 0 = 10, b =3/, and r = 24.74, which results in the loss
of stability of equilibrium states 0O, and 0,.

The Routh —Hurwitz conditions imply that the stability boundary in the para-
meter space of the equilibdum states O, and O, is determined by the equation

S=b04+b+1)r+0)—200(r—1=20 (2

When the stability boundary is passed from positive to negative valuesof § ,
the nature of equilibrium states 0, and Os changes from a stable focus to a saddle-
focus, while at the boundary itself the characteristic equation for these equilibrium
states has two pure imaginary roots. In that case all variants of phase trajectory be-
havior in the neighborhood of the equilibdum state had been thoroughly investigated;
they are determined by the sign of the Liapunov or focal quantities [1, 5].

The analysis carried out below makes it possible to assert that for positive para-
meters the Liapunov quantity is positive, i.e. the stability boundary of the Lorentz
model is unsafe. It should be noted that the estimate of the sign of Liapunov's
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quantity obtained in [6] for the iimit case ¢ — co conforms to that assertion, (Nu-
merical calculations by York and Ruelle cited in [7] according to which the Liapunov
quantity may change its sign when the parameters are positive, is not corroborated by
the direct determination on a computer of phase trajectories near the equilibrium stabil-
ity boundary; detailed calculations were carried out for the following values of para—
meters; ¢ = 100, b = 75, r =~ 741.66 and for 0 = 100, b =1, r = 106. 12 . The
above statement is also valid in the case of the mathematically similar problem of the
single-mode quantum generator [4, 8, 9],

An exhaustive and fairly convenient for practical applications algorithm for the
determination the first Liapunov quantity in terms of coefficients of the input system
(1) was formulated by Bautin [1], That algorithm is used below,

To obtain the simplest expression for the Liapunov quantity we represent system
{1) in the form

==+ N — b+ )+ b0 (r— )zt 2z 2+ (3)
(0 + 1) 232/ 23 — zdzy — 0z3® = P, (7, Zg, Ty)

zy' =z = Py (3y, Ty, T3), Ty = 23 = Py (2), 2y, 25)

Zy =2, Za= ', gz

Then in conformity with [1] we reduce system (3) to the standard form by expand-
ing Py (zy, 25, 25), i =1, 2,3 in series in powess of the new variables z;’ = z; —
z°, j = 1, 2, 8. The term 2,° denotes coordinates of one of the equilibrium states
0, and O; . Limiting the expamion to and including third order terms and omitt-
ing primes at new variables, we obtain the following system:

zj = (,;1)(7')_,,1 + “i(j)“fi + a;PDzy 4 ayPzs 4 c“m:,’ + anPz,3 4 (4
24(,1% .:,:r, + 2:(1;)3(3);1% + 2(‘{::“)3’:33 -+ ag)lxls + a%’a +al)p®
3“;1331 z, + 3“,131'1'33 + 34;’:;-“1’:’ + 3“&-“2"3 + 34{’3;1’133’ +
Safyzsze® + 6alimaym, j =1, 2, 3

whose nonzero coefficients are

W e W _
a p O—b—1, G0 = —g= —p(otys), oO
—230 (r — 1) T @+, &t = (5)

aﬂ(l) — (0. + i) [b (P‘ — 1)}-113‘ ass(l) B 30[6(7‘ —— 1””‘:
a1, = 1, [5 (r — )]

ap® = — [ (r — )], a&’, = — g, ag; = — (0 -+ 1) [3b (r —1)]2
afth = — sy affh = — Vs [b(r — DI, 0, = 1, 0,0 = 4

For the first Liapunov quantity we have the following expression:

8 =Y 2(ARAQ — ADAD) +248) (4T + AD)—240(4D + 4AD)+ (g
3¢ (AQ) + AQ + AZ + Q)+ 2 (72 + 4g))1x
(PH1243) GAR + AD) + 242 (AR + 34N+ 44D (4D + 4] +
4pg" (AR — AQ) (AR + AD) + 248 (4D — A) +
16g (A% + AG) (AR + 4D
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At the stability boundary Ay ) and Ay}, are defined in terms of coefficients
of system (4) by formulas

’ '
. %l 1 Y = %n
Al = 3 (ass) Paéa) an(l))' A(J = Ao (pa(l) a(}}-—pﬁaﬁ)),
ol
n? 't

A(f) Aﬁ {qa(l)-—a“)}

. a'. . (1; q
A= A=

@ _ % a Uy g
Apze = A, ol Ag)s"' "Z‘!; agsh

;

A(3) =0, A(ﬁ) = AO ( a(l) +2qa(l))

’ 1/, ' +
an' =q" ay' = — ¢ dy' = —pq, Ay=qgl(p2+ ¢, j=1,23

Substituting expressions (5) and (6) and taking into account formula (2), for the
first Liapunov quantity at the stability limit § we obtain the final formula

g = '3bnlpg (p? + ¢) (0% + 4¢) (6 — b — D] [90* +
(— 185 + 20) 0% 4 (2082 + 2b + 10)0?% 4 (— 253 + 1252 + 105 — 4) o —
bt — 6% — 1252 — 10b — 3]

(D

This formula considerably simplifies the determination of the sign of Liapunov's
quantity for any specified parameter values at the stability boundary. It does not,
however, allow the establishment of the necessary general statements about this
problem, To overcome this shortcoming we use some simple reasoning which leads
to a simpler form of formula (7).

From the physical aspect of this problem of interest is that section of the stability
boundary in which all three parameters b, ¢ , and r are positive., Since at the stabil-
ity boundary the parameter r = o (0 -~ b + 3) (6 — b — 1)7* , it is sufficient to
consider the region of parameters s and b defined by the condition0 < b < ¢ — 1.
The substitution of ¢ = o, -+ b +— 1 into (7) then shows that the first Liapunov quant-
ity g is positive when 5 >0 and o, > 0. This confirms the assertion about the
unsafe character of the stability regfon boundary of the Lorentz model.

The author thanks L. P. Shil'nikov for his interest in this work.
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