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Ropstties Of the Lorentz model stability bamdariu are investigated by 
methods of thy m@ftaffVe thsory Of differential equations developed by 
Bauttn Cl& It is shown that for pame phya~a~ parameter thtt ~OUU*~ of 

the stability rqion is unsafe. 

The Lore& model [2] is defined by the system of equations 

5’ t -u (t - !/), Y’ = - 2x + rz - y, 2’ = sy - bz 
(1) 

w&e b, (J, and r are podtive physical paramekrs, to which attenticn was &awn 
in connection wfth the problem of exi&encc of stable limit sets of complex nattin, 
viz. the so-called “strange attractors” [3,4], and the ensuing new interpretation of 
turbulence. System (1) can have three stability states 

01 (2 = y = a - O), 0, (t = y = + [b (r - I)]‘!‘, z=r- 1 ? 
09 (5 = y = -[b (r - i)]“‘, .z = r - 1) 

The equilibrium state 4 exists for any values of parameters and is a stable 
nodewhen r<forasaddlewhen r>i. When r>l thebffuraction of the 
equilibdum state 0, (r = 1pesulta in the appearance of stable eqdlibriurn state 0, 
and 0,. Properties of the boundaries of equilibdum stability region of states 0, 
and 4 are inveMgated below in the critical case of two pure imaginary roots of 
We characteristic equation. Interest in this problem was stimulated by new reaulfs 
[4J which indicate the exW.ence of a strict mode of the onset of stocha&ic proper+ 
its and hyskresis for u = 10, b = */, and r = 24.74, which reualts in the Ino, 
of stability of equilfbdum states 0, and 0,. 

The Rot&h -Hurwltz conditions imply that the stability boundary in the para- 
meter space of the cquilibdum states 0, and OS isdetermined by the equation 

S = b (0 + b + 1) (r + 0) - 2db (r - 1) = 0 (2) 

When the stability boundary is passed from pcsitive to negative values of S , 
the nature of equilibrium rtates 0, and & changes from a stable focus to a saddle- 
focus, wtrfb at the bowukry its&f the charactehtic ecyation sfor thr# spuitibrium 
state hu two pure impgtnary roots. UB Uat case ali variants of phrus tr@srcW be- 
haviot in the neighbo$mod of the s@libdum state had bean thomugMy IInvartig;lW 
they 9s detemfried by the sign of the Liapunov or foCa1 Wmtitfes fl, 51. 

the analysis ~anrfed cut ba.0~ m0ke3 it p0dbic t0 atrsrt that far porsUve pai+ 
metes the Liapunov quautity is pcdtive, i.e. the stability boundary of the Lore& 
model is unsafe. It shmtld be noted that the estimate Of the Sign Of LIppuK)V’S 
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quantity obtained in [S] for the limit case u + 00 conforms to that assertiou~ (NIP 
merical calculations by York and Ruelle cfted in [7J according to which the Uapunov 
quantity may change its sign when the parameters are pcaitive, is not corroborated by 
the direct determination ou a computer of phase trajectories near the equilibrium stabil- 
ity boundary; detailed calculations were carded out for the following valueo of para- 
meters: a = 100, b = 75, r s 741.66 and for o=1OO,b==l,r&N%L12. Tht 

above statement is also valid in the case of the mathematically similar problem of the 
single-mode quantum genaator [4,8,9x 

An e&austive and fairly convenient for practical applications algorithm for the 
determination the first Uapunov qua&it-y in teas of coefficients of the input system 
(1) was formulated by Bautiu El]. That algodthm is used below, 

To obtain the simplest expression for the Liapunov quantity we represent system 
(l)intheform 

=a ‘=z 1 = p$i h 287 4 $3' = x, = 84 (21, +, za) 

. . 
x1=2, q=z', q=t 

Then in ccvdormity with [l] we reduce system (3) to the standard form by expand- 
ing PC (tic -%t 4, f = 1,2,3 fnseriainpowersoftheuewvariablea xj’=zj- 

xjD, f = 1,2,3. The term z$’ denotea coordinates of one of the equilibrium rtates 
0, and 0, . Limiting the otpamion to and including third order terrm aud omitt- 

ing primes at new variables, we obtain the following systems 

(4) 

al(l) = - p = _ (I - b - 

-2bo (r - 1) 
1, fp= -g = -b (0 + r), a$‘) as (5) 

For the first Liapunov quant.iQ we have the following txptcrrian: 

R = Qn 12 CABAL - A$$@) +2A$’ (&+ 4) - 2A~)(A~ + A$))+ 

3d” (Ag: + Ag + A& + A&] +I/, n. [pg”’ (p2 + 44)1-1x 

f6j 

{Pa [2A&’ (3A$ + A$) + 2Ag (Aif + 3A$))]+ 4A&) (,.$I + A$)j + 

48’S”” ItAg) - Ag) (A$ + A$) + 24 (A$ - A$))] + 

16q (A% + A$$ (42 + Agj)f 
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At the stability boundary A ktfif and At?! are defined in terms of ~~ff~c~~~ 
of system (4) by formulas 

n;lq (1) A$ = -g u22, 

, 

%l' = 4 I!?, q; = _ q’/2, & = - Pq, Au = q3’” (p” + & j = 1, 2.3 

Su~~~~g expressions (5) and (6) and taking into account formula (2). for thy 
first Liapunov quantity at th: stability limit 8 we obtain the final formula 

g = ‘&r[Pq”’ (P2 -t- a) (p2 + 4q) (a - b - f)]” [9a’ _t 
(- 186 + 20) os + (20b2 + Zb f IO)@ + (- 2b’ -+ 12b2 + 10b - 4) o - 

(7) 

b” - 6b3 - 12G - iOb - 31 

This formula considerably simpUfiea the determination of the sign of Liapunov’s 
qnantity for any specified parameter values at the stability boundary. It does not, 

however, allow the establishment of the necessary general statements about this 
problem. To overcome this shortcoming we use some simple reasoning which leads 
to a simpler fcrm of formula (7). 

From the physical aspect of thfs problem of interest is that section of the stability 
boundary in which all three parameters b, Q , and r are positive. Since at the stabii- 
ity boundary the parameter F = c (a -i- b + 3) (o - b - 1)-l s it ir suffi&X%t to 
consider the region of parameters (5 and b defined by the condition 0 < b i u - 1. 

The subrtitution of o = u* + b T 1 into (7) then shows that the first Liapunov quant- 
ity g is positive when b > 0 and u* > 0 . This confirms the assertion about the 
unsafe character of the stabitity regfon boundary of the Lorentz model. 

The author thanks L. P. ShilYrikov for his interest in this work. 
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